An Evolutionary Algorithm for Global Induction of Regression Trees with Multivariate Linear Models
نویسندگان
چکیده
In the paper we present a new evolutionary algorithm for induction of regression trees. In contrast to the typical top-down approaches it globally searches for the best tree structure, tests at internal nodes and models at the leaves. The general structure of proposed solution follows a framework of evolutionary algorithms with an unstructured population and a generational selection. Specialized genetic operators efficiently evolve regression trees with multivariate linear models. Bayesian information criterion as a fitness function mitigate the over-fitting problem. The preliminary experimental validation is promising as the resulting trees are less complex with at least comparable performance to the classical top-down counterpart.
منابع مشابه
Global Induction of Oblique Model Trees: An Evolutionary Approach
In this paper we propose a new evolutionary algorithm for global induction of oblique model trees that associates leaves with multiple linear regression models. In contrast to the typical top-down approaches it globally searches for the best tree structure, splitting hyperplanes in internal nodes and models in the leaves. The general structure of proposed solution follows a typical framework of...
متن کاملAn evolutionary algorithm for global induction of regression and model trees
Most tree-based algorithms are typical top-down approaches that search only for locally optimal decisions at each node and does not guarantee the globally optimal solution. In this paper, we would like to propose a new evolutionary algorithm for global induction of univariate regression trees and model trees that associate leaves with simple linear regression models. The general structure of ou...
متن کاملEvolutionary induction of global model trees with specialized operators and memetic extensions
Metaheuristics, such as evolutionary algorithms (EAs), have been successfully applied to the problem of decision tree induction. Recently, an EA was proposed to evolve model trees, which are a particular type of decision tree that is employed to solve regression problems. However, there is a need to specialize the EAs in order to exploit the full potential of evolutionary induction. The main co...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملStepwise Induction of Model Trees
Regression trees are tree-based models used to solve those prediction problems in which the response variable is numeric. They differ from the better-known classification or decision trees only in that they have a numeric value rather than a class label associated with the leaves. Model trees are an extension of regression trees in the sense that they associate leaves with multivariate linear m...
متن کامل